Nuprl Lemma : eval-parallel-dataflow-property

[A:Type]. [m:A]. [n:]. [B:n  Type]. [ds:k:n  dataflow(A;B[k])].
  (eval-parallel-dataflow(n;ds;m) = <k.(fst(ds k(m))), k.dataflow-out(ds k;m)>)


Proof not projected




Definitions occuring in Statement :  eval-parallel-dataflow: eval-parallel-dataflow(n;s;m) dataflow-out: dataflow-out(df;a) dataflow-ap: df(a) dataflow: dataflow(A;B) int_seg: {i..j} nat: uall: [x:A]. B[x] so_apply: x[s] pi1: fst(t) apply: f a lambda: x.A[x] function: x:A  B[x] pair: <a, b> product: x:A  B[x] natural_number: $n universe: Type equal: s = t
Definitions :  uall: [x:A]. B[x] so_apply: x[s] member: t  T nat: int_seg: {i..j} all: x:A. B[x] implies: P  Q le: A  B map: map(f;as) upto: upto(n) primrec: primrec(n;b;c) ifthenelse: if b then t else f fi  eq_int: (i = j) ycomb: Y btrue: tt bfalse: ff and: P  Q from-upto: [n, m) lt_int: i <z j not: A guard: {T} false: False lelt: i  j < k null: null(as) dataflow-ap: df(a) subtype: S  T squash: T true: True ge: i  j  bool: unit: Unit uimplies: b supposing a uiff: uiff(P;Q) prop: sq_type: SQType(T) it:
Lemmas :  int_seg_wf dataflow_wf nat_wf btrue_wf bool_wf uiff_transitivity equal_wf assert_wf eqtt_to_assert assert_of_eq_int it_wf bnot_wf not_wf eqff_to_assert assert_of_bnot not_functionality_wrt_uiff primrec_wf unit_wf2 le_wf eq_int_wf subtype_base_sq int_subtype_base dataflow-ap_wf squash_wf true_wf lelt_wf tuple-type_wf map_wf nat_properties ge_wf

\mforall{}[A:Type].  \mforall{}[m:A].  \mforall{}[n:\mBbbN{}].  \mforall{}[B:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[ds:k:\mBbbN{}n  {}\mrightarrow{}  dataflow(A;B[k])].
    (eval-parallel-dataflow(n;ds;m)  =  <\mlambda{}k.(fst(ds  k(m))),  \mlambda{}k.dataflow-out(ds  k;m)>)


Date html generated: 2012_01_23-AM-11_57_00
Last ObjectModification: 2011_12_28-PM-12_07_41

Home Index