Nuprl Lemma : bind-nextouts1_wf

[M,A,B:Type]. [dfpY:A  DataflowProgram(M)]. [L:bag(a:A  (df-program-statetype(dfpY a)?))]. [m:M].
  bind-nextouts1(L;dfpY;m)  bag(a:A  (df-program-statetype(dfpY a)?)  bag(B)) 
  supposing a:A. (df-program-type(dfpY a) r B)


Proof not projected




Definitions occuring in Statement :  bind-nextouts1: bind-nextouts1(L;dfpY;m) df-program-statetype: df-program-statetype(dfp) df-program-type: df-program-type(dfp) dataflow-program: DataflowProgram(A) subtype_rel: A r B uimplies: b supposing a uall: [x:A]. B[x] all: x:A. B[x] unit: Unit member: t  T apply: f a function: x:A  B[x] product: x:A  B[x] union: left + right universe: Type bag: bag(T)
Definitions :  so_lambda: x.t[x] prop: implies: P  Q bind-nextouts1: bind-nextouts1(L;dfpY;m) member: t  T all: x:A. B[x] uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s]
Lemmas :  dataflow-program_wf subtype_rel_wf all_wf empty-bag_wf subtype_rel_bag df-program-type_wf df-program-in-state-ap_wf bag_wf unit_wf2 df-program-statetype_wf bag-map_wf

\mforall{}[M,A,B:Type].  \mforall{}[dfpY:A  {}\mrightarrow{}  DataflowProgram(M)].  \mforall{}[L:bag(a:A  \mtimes{}  (df-program-statetype(dfpY  a)?))].
\mforall{}[m:M].
    bind-nextouts1(L;dfpY;m)  \mmember{}  bag(a:A  \mtimes{}  (df-program-statetype(dfpY  a)?)  \mtimes{}  bag(B)) 
    supposing  \mforall{}a:A.  (df-program-type(dfpY  a)  \msubseteq{}r  B)


Date html generated: 2012_01_23-PM-12_01_13
Last ObjectModification: 2011_12_16-PM-06_22_52

Home Index