{ es:EO. p:E  (E + Top).
    (causal-predecessor(es;p)  SWellFounded(p-graph(E;p) y x)) }

{ Proof }



Definitions occuring in Statement :  causal-predecessor: causal-predecessor(es;p) es-E: E event_ordering: EO top: Top all: x:A. B[x] implies: P  Q apply: f a function: x:A  B[x] union: left + right p-graph: p-graph(A;f) strongwellfounded: SWellFounded(R[x; y])
Definitions :  equal: s = t member: t  T function: x:A  B[x] all: x:A. B[x] strongwellfounded: SWellFounded(R[x; y]) subtype_rel: A r B strong-subtype: strong-subtype(A;B) apply: f a record-select: r.x infix_ap: x f y assert: b causal-predecessor: causal-predecessor(es;p) dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ event_ordering: EO es-E: E universe: Type prop: rel_implies: R1 =R2 p-graph: p-graph(A;f) lambda: x.A[x] implies: P  Q top: Top union: left + right es-causl: (e < e') so_lambda: x y.t[x; y] void: Void isect: x:A. B[x] subtype: S  T do-apply: do-apply(f;x) suptype: suptype(S; T) can-apply: can-apply(f;x) cand: A c B product: x:A  B[x] and: P  Q decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  guard: {T} set: {x:A| B[x]} 
Lemmas :  es-causl-swellfnd assert_wf can-apply_wf do-apply_wf member_wf causal-predecessor_wf top_wf event_ordering_wf strongwf-monotone p-graph_wf2 p-graph_wf rel_implies_wf es-causl_wf es-E_wf strongwellfounded_wf

\mforall{}es:EO.  \mforall{}p:E  {}\mrightarrow{}  (E  +  Top).    (causal-predecessor(es;p)  {}\mRightarrow{}  SWellFounded(p-graph(E;p)  y  x))


Date html generated: 2011_08_16-AM-11_12_39
Last ObjectModification: 2010_09_24-PM-08_47_30

Home Index