{ es:EO. SWellFounded((e < e')) }

{ Proof }



Definitions occuring in Statement :  es-causl: (e < e') es-E: E event_ordering: EO all: x:A. B[x] strongwellfounded: SWellFounded(R[x; y])
Definitions :  suptype: suptype(S; T) set: {x:A| B[x]}  real: grp_car: |g| subtype: S  T int: limited-type: LimitedType strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  and: P  Q uiff: uiff(P;Q) intensional-universe: IType fpf: a:A fp-B[a] subtype_rel: A r B uall: [x:A]. B[x] eq_atom: eq_atom$n(x;y) bool: less_than: a < b nat: not: A l_member: (x  l) implies: P  Q list: type List product: x:A  B[x] exists: x:A. B[x] infix_ap: x f y union: left + right or: P  Q Id: Id isect: x:A. B[x] uimplies: b supposing a atom: Atom apply: f a top: Top eq_atom: x =a y ifthenelse: if b then t else f fi  record: record(x.T[x]) so_lambda: x y.t[x; y] prop: universe: Type es-E: E all: x:A. B[x] function: x:A  B[x] equal: s = t event_ordering: EO dep-isect: Error :dep-isect,  record+: record+ member: t  T MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  RepeatFor: Error :RepeatFor,  RepUR: Error :RepUR,  CollapseTHEN: Error :CollapseTHEN,  token: "$token" record-select: r.x es-causl: (e < e') strongwellfounded: SWellFounded(R[x; y]) AssertBY: Error :AssertBY,  tactic: Error :tactic,  Auto: Error :Auto,  D: Error :D
Lemmas :  es-E_wf nat_wf member_wf es-causl_wf Id_wf l_member_wf not_wf subtype_rel_wf intensional-universe_wf bool_wf subtype_rel_self event_ordering_wf strongwellfounded_wf

\mforall{}es:EO.  SWellFounded((e  <  e'))


Date html generated: 2011_08_16-AM-10_24_47
Last ObjectModification: 2010_11_22-PM-09_42_31

Home Index