{ [B:Type]. [n:]. [m:n + 1]. [A:n  Type]. [bags:k:n  bag(A k)].
  [g:funtype(n - m;x.(A (x + m));bag(B))].
    (concat-lifting-list(n;bags) m g  bag(B)) }

{ Proof }



Definitions occuring in Statement :  concat-lifting-list: concat-lifting-list(n;bags) int_seg: {i..j} nat: uall: [x:A]. B[x] member: t  T apply: f a lambda: x.A[x] function: x:A  B[x] subtract: n - m add: n + m natural_number: $n universe: Type bag: bag(T) funtype: funtype(n;A;T)
Definitions :  tactic: Error :tactic,  Unfold: Error :Unfold,  CollapseTHEN: Error :CollapseTHEN,  CollapseTHENA: Error :CollapseTHENA,  Auto: Error :Auto,  uall: [x:A]. B[x] member: t  T isect: x:A. B[x] function: x:A  B[x] int_seg: {i..j} apply: f a bag: bag(T) universe: Type nat: equal: s = t funtype: funtype(n;A;T) concat-lifting-list: concat-lifting-list(n;bags) axiom: Ax all: x:A. B[x] subtract: n - m int: subtype: S  T rationals: real: set: {x:A| B[x]}  le: A  B not: A false: False implies: P  Q void: Void less_than: a < b add: n + m minus: -n lelt: i  j < k and: P  Q prop: subtype_rel: A r B uiff: uiff(P;Q) product: x:A  B[x] uimplies: b supposing a ge: i  j  natural_number: $n strong-subtype: strong-subtype(A;B) lambda: x.A[x] grp_car: |g| lifting-gen-list-rev: Error :lifting-gen-list-rev,  primrec: primrec(n;b;c) ycomb: Y fpf: a:A fp-B[a] eclass: EClass(A[eo; e])
Lemmas :  temp-lifting-gen-list-rev_wf bag-union_wf funtype_wf bag_wf int_seg_wf nat_wf member_wf not_wf false_wf le_wf

\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[m:\mBbbN{}n  +  1].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[bags:k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)].
\mforall{}[g:funtype(n  -  m;\mlambda{}x.(A  (x  +  m));bag(B))].
    (concat-lifting-list(n;bags)  m  g  \mmember{}  bag(B))


Date html generated: 2011_08_17-PM-06_07_54
Last ObjectModification: 2011_06_01-PM-01_59_00

Home Index