{ [Info,A:Type]. [X,Y:EClass(A)].  ([X?Y]  EClass(A)) }

{ Proof }



Definitions occuring in Statement :  cond-class: [X?Y] eclass: EClass(A[eo; e]) uall: [x:A]. B[x] member: t  T universe: Type
Definitions :  natural_number: $n set: {x:A| B[x]}  real: grp_car: |g| int: nat: bag-size: bag-size(bs) eq_int: (i = j) ifthenelse: if b then t else f fi  bag: bag(T) eclass-compose2: eclass-compose2(f;X;Y) subtype: S  T event_ordering: EO es-E: E event-ordering+: EO+(Info) lambda: x.A[x] function: x:A  B[x] all: x:A. B[x] uall: [x:A]. B[x] so_lambda: x y.t[x; y] isect: x:A. B[x] axiom: Ax cond-class: [X?Y] eclass: EClass(A[eo; e]) universe: Type member: t  T equal: s = t
Lemmas :  eclass_wf es-E_wf event-ordering+_inc event-ordering+_wf eclass-compose2_wf ifthenelse_wf eq_int_wf bag-size_wf nat_wf bag_wf

\mforall{}[Info,A:Type].  \mforall{}[X,Y:EClass(A)].    ([X?Y]  \mmember{}  EClass(A))


Date html generated: 2011_08_16-AM-11_39_07
Last ObjectModification: 2011_06_20-AM-00_30_36

Home Index