{ [T:Type]. (EO+(T)  EO) }

{ Proof }



Definitions occuring in Statement :  event-ordering+: EO+(Info) event_ordering: EO uall: [x:A]. B[x] subtype: S  T universe: Type
Definitions :  token: "$token" strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B event-ordering+: EO+(Info) uall: [x:A]. B[x] isect: x:A. B[x] lambda: x.A[x] es-base-E: es-base-E(es) equal: s = t axiom: Ax universe: Type subtype: S  T all: x:A. B[x] function: x:A  B[x] member: t  T event_ordering: EO record+: record+ so_lambda: x.t[x] fpf: a:A fp-B[a] record: record(x.T[x]) eq_atom: eq_atom$n(x;y) atom: Atom apply: f a top: Top eq_atom: x =a y ifthenelse: if b then t else f fi  record-select: r.x dep-isect: Error :dep-isect
Lemmas :  subtype_rel_self subtype_rel_wf event_ordering_wf record+_wf es-base-E_wf member_wf

\mforall{}[T:Type].  (EO+(T)  \msubseteq{}  EO)


Date html generated: 2011_08_16-AM-11_20_53
Last ObjectModification: 2011_06_20-AM-00_25_31

Home Index