{ [F:Type  Type]
    Continuous+(T.LabeledDAG(F[T])) supposing Continuous+(T.F[T]) }

{ Proof }



Definitions occuring in Statement :  ldag: LabeledDAG(T) strong-type-continuous: Continuous+(T.F[T]) uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] universe: Type
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a strong-type-continuous: Continuous+(T.F[T]) so_apply: x[s] ldag: LabeledDAG(T) member: t  T all: x:A. B[x] so_lambda: x.t[x] ext-eq: A  B and: P  Q top: Top prop:
Lemmas :  strong-continuous-set labeled-graph_wf top_wf is-dag_wf continuous-labeled-graph nat_wf strong-type-continuous_wf subtype_rel-labeled-graph

\mforall{}[F:Type  {}\mrightarrow{}  Type].  Continuous+(T.LabeledDAG(F[T]))  supposing  Continuous+(T.F[T])


Date html generated: 2011_08_16-PM-06_43_06
Last ObjectModification: 2011_06_18-AM-10_54_23

Home Index