{ 
[F:Type 
 Type]
    Continuous+(T.LabeledDAG(F[T])) supposing Continuous+(T.F[T]) }
{ Proof }
Definitions occuring in Statement : 
ldag: LabeledDAG(T), 
strong-type-continuous: Continuous+(T.F[T]), 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
so_apply: x[s], 
function: x:A 
 B[x], 
universe: Type
Definitions : 
uall:
[x:A]. B[x], 
uimplies: b supposing a, 
strong-type-continuous: Continuous+(T.F[T]), 
so_apply: x[s], 
ldag: LabeledDAG(T), 
member: t 
 T, 
all:
x:A. B[x], 
so_lambda: 
x.t[x], 
ext-eq: A 
 B, 
and: P 
 Q, 
top: Top, 
prop:
Lemmas : 
strong-continuous-set, 
labeled-graph_wf, 
top_wf, 
is-dag_wf, 
continuous-labeled-graph, 
nat_wf, 
strong-type-continuous_wf, 
subtype_rel-labeled-graph
\mforall{}[F:Type  {}\mrightarrow{}  Type].  Continuous+(T.LabeledDAG(F[T]))  supposing  Continuous+(T.F[T])
Date html generated:
2011_08_16-PM-06_43_06
Last ObjectModification:
2011_06_18-AM-10_54_23
Home
Index