{ [Info:Type]. [es:EO+(Info)]. [X:EClass(Top)]. [f:sys-antecedent(es;X)].
  [a,b:E(X)].
    (a (X;f) b  (Ax  a (X;f) b)) }

{ Proof }



Definitions occuring in Statement :  cut-order: a (X;f) b sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) uall: [x:A]. B[x] top: Top implies: P  Q member: t  T universe: Type axiom: Ax
Definitions :  subtype: S  T top: Top event_ordering: EO es-E: E fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) eq_atom: x =a y eq_atom: eq_atom$n(x;y) decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b set: {x:A| B[x]}  dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B all: x:A. B[x] prop: axiom: Ax fset-singleton: {x} es-eq: es-eq(es) es-cut: Cut(X;f) fset: FSet{T} cut-of: cut(X;f;s) fset-member: a  s lambda: x.A[x] cut-order: a (X;f) b universe: Type implies: P  Q function: x:A  B[x] equal: s = t event-ordering+: EO+(Info) so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) uall: [x:A]. B[x] isect: x:A. B[x] member: t  T Auto: Error :Auto,  Unfold: Error :Unfold,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic,  apply: f a es-causle: e c e' nil: [] es-interface-pred: X-pred cons: [car / cdr] fset-closed: (s closed under fs) fpf-cap: f(x)?z set-equal: set-equal(T;x;y) list: type List quotient: x,y:A//B[x; y] union: left + right MaAuto: Error :MaAuto
Lemmas :  fset-member_witness set-equal_wf es-cut_wf subtype_rel_wf fset-closed_wf es-eq_wf-interface es-interface-pred_wf2 fset_wf member_wf fset-member_wf fset-singleton_wf cut-of_wf fset-member_wf-cut es-E-interface_wf sys-antecedent_wf eclass_wf top_wf es-E_wf event-ordering+_inc event-ordering+_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[f:sys-antecedent(es;X)].  \mforall{}[a,b:E(X)].
    (a  \mleq{}(X;f)  b  {}\mRightarrow{}  (Ax  \mmember{}  a  \mleq{}(X;f)  b))


Date html generated: 2011_08_16-PM-05_50_34
Last ObjectModification: 2011_06_20-AM-01_36_05

Home Index