{ [k:Knd]. [T:Type]. [da:k:Knd fp-Type].  (da-agrees-on(da;k;T)  ) }

{ Proof }



Definitions occuring in Statement :  da-agrees-on: da-agrees-on(da;k;T) fpf: a:A fp-B[a] Knd: Knd uall: [x:A]. B[x] prop: member: t  T universe: Type
Definitions :  uall: [x:A]. B[x] member: t  T prop: da-agrees-on: da-agrees-on(da;k;T) implies: P  Q so_lambda: x.t[x] so_apply: x[s] uimplies: b supposing a
Lemmas :  assert_wf fpf-dom_wf Knd_wf Kind-deq_wf fpf-trivial-subtype-top ext-eq_wf fpf-ap_wf fpf_wf

\mforall{}[k:Knd].  \mforall{}[T:Type].  \mforall{}[da:k:Knd  fp->  Type].    (da-agrees-on(da;k;T)  \mmember{}  \mBbbP{})


Date html generated: 2011_08_10-AM-08_13_15
Last ObjectModification: 2011_06_18-AM-08_28_12

Home Index