{ [T:Type]. [P:T  ].
    ((x:T. Dec(P[x]))  finite-type(T)  Dec(x:T. P[x])) }

{ Proof }



Definitions occuring in Statement :  decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies: P  Q function: x:A  B[x] universe: Type finite-type: finite-type(T)
Definitions :  uall: [x:A]. B[x] prop: implies: P  Q all: x:A. B[x] so_apply: x[s] member: t  T iff: P  Q exists: x:A. B[x] and: P  Q rev_implies: P  Q so_lambda: x.t[x] finite-type: finite-type(T) nat: surject: Surj(A;B;f)
Lemmas :  finite-type_wf decidable_wf int_seg_wf decidable_functionality decidable__ex_int_seg

\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:T.  Dec(P[x]))  {}\mRightarrow{}  finite-type(T)  {}\mRightarrow{}  Dec(\mexists{}x:T.  P[x]))


Date html generated: 2011_08_16-AM-11_10_48
Last ObjectModification: 2011_06_20-AM-00_18_56

Home Index