Nuprl Lemma : decidable_functionality

[P,Q:ℙ].  ((P ⇐⇒ Q)  (Dec(P) ⇐⇒ Dec(Q)))


Proof




Definitions occuring in Statement :  decidable: Dec(P) uall: [x:A]. B[x] prop: iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: rev_implies:  Q
Lemmas referenced :  decidable_wf iff_wf iff_preserves_decidability
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :inhabitedIsType,  Error :universeIsType,  universeEquality independent_functionElimination productElimination

Latex:
\mforall{}[P,Q:\mBbbP{}].    ((P  \mLeftarrow{}{}\mRightarrow{}  Q)  {}\mRightarrow{}  (Dec(P)  \mLeftarrow{}{}\mRightarrow{}  Dec(Q)))



Date html generated: 2019_06_20-AM-11_16_57
Last ObjectModification: 2018_09_26-AM-10_24_31

Theory : core_2


Home Index