Nuprl Lemma : iff_preserves_decidability

[A,B:ℙ].  (Dec(A)  (A ⇐⇒ B)  Dec(B))


Proof




Definitions occuring in Statement :  decidable: Dec(P) uall: [x:A]. B[x] prop: iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  decidable: Dec(P) uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q or: P ∨ Q member: t ∈ T prop: guard: {T} not: ¬A false: False rev_implies:  Q
Lemmas referenced :  not_wf iff_wf or_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation sqequalHypSubstitution productElimination thin unionElimination independent_functionElimination hypothesis inlFormation cut introduction extract_by_obid isectElimination hypothesisEquality inrFormation Error :inhabitedIsType,  Error :universeIsType,  universeEquality voidElimination

Latex:
\mforall{}[A,B:\mBbbP{}].    (Dec(A)  {}\mRightarrow{}  (A  \mLeftarrow{}{}\mRightarrow{}  B)  {}\mRightarrow{}  Dec(B))



Date html generated: 2019_06_20-AM-11_15_06
Last ObjectModification: 2018_09_26-AM-10_42_12

Theory : core_2


Home Index