{ [T:Type]
    ((x,y:T.  Dec(x = y))
     ([R:T  T  ]
          (SWellFounded(x R y)
           rel_finite(T;R)
           (x,y:T.  Dec(x R y))
           ([P:T  ]
                ((x:T. Dec(P[x]))
                 (y:T. Dec(x:T. ((x (R^*) y)  P[x])))))))) }

{ Proof }



Definitions occuring in Statement :  decidable: Dec(P) uall: [x:A]. B[x] prop: infix_ap: x f y so_apply: x[s] all: x:A. B[x] implies: P  Q function: x:A  B[x] universe: Type equal: s = t rel_star: R^* rel_finite: rel_finite(T;R) strongwellfounded: SWellFounded(R[x; y])
Definitions :  uall: [x:A]. B[x] implies: P  Q all: x:A. B[x] prop: infix_ap: x f y so_apply: x[s] member: t  T so_lambda: x.t[x] so_lambda: x y.t[x; y] rel_finite: rel_finite(T;R) so_apply: x[s1;s2]
Lemmas :  decidable__rel_star rel_star_finite decidable__all-rel_finite rel_star_wf decidable_wf rel_finite_wf strongwellfounded_wf

\mforall{}[T:Type]
    ((\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}]
                (SWellFounded(x  R  y)
                {}\mRightarrow{}  rel\_finite(T;R)
                {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  R  y))
                {}\mRightarrow{}  (\mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}]
                            ((\mforall{}x:T.  Dec(P[x]))  {}\mRightarrow{}  (\mforall{}y:T.  Dec(\mforall{}x:T.  ((x  (R\^{}*)  y)  {}\mRightarrow{}  P[x]))))))))


Date html generated: 2011_08_16-AM-10_19_10
Last ObjectModification: 2011_06_18-AM-09_08_04

Home Index