{ [T:Type]. [R:T  T  ].
    (SWellFounded(x R y)
     (x,y:T.  Dec(x R y))
     rel_finite(T;R)
     rel_finite(T;x,y.(x (R^*) y))) }

{ Proof }



Definitions occuring in Statement :  decidable: Dec(P) uall: [x:A]. B[x] prop: infix_ap: x f y all: x:A. B[x] implies: P  Q lambda: x.A[x] function: x:A  B[x] universe: Type rel_star: R^* rel_finite: rel_finite(T;R) strongwellfounded: SWellFounded(R[x; y])
Definitions :  uall: [x:A]. B[x] prop: implies: P  Q infix_ap: x f y all: x:A. B[x] rel_finite: rel_finite(T;R) member: t  T exists: x:A. B[x] so_lambda: x y.t[x; y] or: P  Q guard: {T} iff: P  Q and: P  Q rev_implies: P  Q so_apply: x[s1;s2]
Lemmas :  rel_plus_finite rel-star-iff-rel-plus-or cons_member rel_star_wf l_member_wf rel_finite_wf decidable_wf strongwellfounded_wf

\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (SWellFounded(x  R  y)
    {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  R  y))
    {}\mRightarrow{}  rel\_finite(T;R)
    {}\mRightarrow{}  rel\_finite(T;\mlambda{}x,y.(x  rel\_star(T;  R)  y)))


Date html generated: 2011_08_16-AM-10_18_46
Last ObjectModification: 2011_06_18-AM-09_07_38

Home Index