{ [T:Type]. [R:T  T  ].
    (SWellFounded(x R y)
     (x,y:T.  Dec(x R y))
     rel_finite(T;R)
     rel_finite(T;x,y.(x R y))) }

{ Proof }



Definitions occuring in Statement :  decidable: Dec(P) uall: [x:A]. B[x] prop: infix_ap: x f y all: x:A. B[x] implies: P  Q lambda: x.A[x] function: x:A  B[x] universe: Type rel_finite: rel_finite(T;R) rel_plus: R strongwellfounded: SWellFounded(R[x; y])
Definitions :  uall: [x:A]. B[x] prop: implies: P  Q infix_ap: x f y all: x:A. B[x] rel_finite: rel_finite(T;R) nat: le: A  B ge: i  j  member: t  T not: A false: False so_lambda: x y.t[x; y] exists: x:A. B[x] isl: isl(x) iff: P  Q assert: b btrue: tt bfalse: ff ifthenelse: if b then t else f fi  true: True and: P  Q rev_implies: P  Q or: P  Q pi1: fst(t) guard: {T} int_seg: {i..j} cand: A c B lelt: i  j < k top: Top subtype: S  T strongwellfounded: SWellFounded(R[x; y]) so_apply: x[s1;s2] decidable: Dec(P) uimplies: b supposing a l_member: (x  l)
Lemmas :  nat_properties ge_wf nat_wf le_wf rel_finite_wf decidable_wf strongwellfounded_wf btrue_wf bfalse_wf true_wf false_wf iff_wf assert_wf filter_wf l_member_wf member_filter assert_witness select_wf length_wf1 int_seg_wf select_member append_wf concat_wf map_wf upto_wf rel_plus_wf iff_transitivity member_append or_functionality_wrt_iff member-concat rel_plus_iff rel_star_wf and_functionality_wrt_iff rel-star-iff-rel-plus-or member_wf member_map member_upto2 length_wf_nat top_wf

\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (SWellFounded(x  R  y)  {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  R  y))  {}\mRightarrow{}  rel\_finite(T;R)  {}\mRightarrow{}  rel\_finite(T;\mlambda{}x,y.(x  R\msupplus{}  y)))


Date html generated: 2011_08_16-AM-10_18_41
Last ObjectModification: 2011_06_18-AM-09_07_34

Home Index