Nuprl Lemma : and_functionality_wrt_iff

[P1,P2,Q1,Q2:ℙ].  ((P1 ⇐⇒ P2)  (Q1 ⇐⇒ Q2)  (P1 ∧ Q1 ⇐⇒ P2 ∧ Q2))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: iff: ⇐⇒ Q implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: rev_implies:  Q
Lemmas referenced :  iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  lambdaFormation sqequalHypSubstitution productElimination thin independent_pairFormation independent_functionElimination hypothesis productEquality cumulativity hypothesisEquality cut introduction extract_by_obid isectElimination Error :inhabitedIsType,  Error :universeIsType,  universeEquality

Latex:
\mforall{}[P1,P2,Q1,Q2:\mBbbP{}].    ((P1  \mLeftarrow{}{}\mRightarrow{}  P2)  {}\mRightarrow{}  (Q1  \mLeftarrow{}{}\mRightarrow{}  Q2)  {}\mRightarrow{}  (P1  \mwedge{}  Q1  \mLeftarrow{}{}\mRightarrow{}  P2  \mwedge{}  Q2))



Date html generated: 2019_06_20-AM-11_16_46
Last ObjectModification: 2018_09_26-AM-10_24_23

Theory : core_2


Home Index