{ [P:Unit  ]. (Dec(P[])  Dec(x:Unit. P[x])) }

{ Proof }



Definitions occuring in Statement :  decidable: Dec(P) it: uall: [x:A]. B[x] prop: so_apply: x[s] exists: x:A. B[x] implies: P  Q unit: Unit function: x:A  B[x]
Definitions :  uall: [x:A]. B[x] prop: implies: P  Q so_apply: x[s] all: x:A. B[x] member: t  T so_lambda: x.t[x] finite-type: finite-type(T) exists: x:A. B[x] nat: le: A  B not: A false: False surject: Surj(A;B;f) int_seg: {i..j} lelt: i  j < k and: P  Q unit: Unit it:
Lemmas :  decidable-exists-finite unit_wf decidable_wf it_wf le_wf int_seg_wf surject_wf

\mforall{}[P:Unit  {}\mrightarrow{}  \mBbbP{}].  (Dec(P[\mcdot{}])  {}\mRightarrow{}  Dec(\mexists{}x:Unit.  P[x]))


Date html generated: 2011_08_16-AM-11_10_54
Last ObjectModification: 2011_06_20-AM-00_19_03

Home Index