{ [T:Type]. [eq:EqDecider(T)]. [a,b:T List].
    uiff(l_disjoint(T;a;b);l_intersection(eq;a;b) = []) }

{ Proof }



Definitions occuring in Statement :  l_intersection: l_intersection(eq;L1;L2) uiff: uiff(P;Q) uall: [x:A]. B[x] nil: [] list: type List universe: Type equal: s = t l_disjoint: l_disjoint(T;l1;l2) deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] uiff: uiff(P;Q) l_disjoint: l_disjoint(T;l1;l2) all: x:A. B[x] not: A and: P  Q member: t  T uimplies: b supposing a prop: implies: P  Q false: False or: P  Q iff: P  Q rev_implies: P  Q
Lemmas :  not_wf l_member_wf l_intersection_wf deq_wf cons_member member-intersection nil_member

\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a,b:T  List].    uiff(l\_disjoint(T;a;b);l\_intersection(eq;a;b)  =  [])


Date html generated: 2011_08_10-AM-07_49_07
Last ObjectModification: 2011_06_18-AM-08_13_24

Home Index