{ 
[T:Type]. 
[eq:EqDecider(T)]. 
[a,b:T List].
    uiff(l_disjoint(T;a;b);l_intersection(eq;a;b) = []) }
{ Proof }
Definitions occuring in Statement : 
l_intersection: l_intersection(eq;L1;L2), 
uiff: uiff(P;Q), 
uall:
[x:A]. B[x], 
nil: [], 
list: type List, 
universe: Type, 
equal: s = t, 
l_disjoint: l_disjoint(T;l1;l2), 
deq: EqDecider(T)
Definitions : 
uall:
[x:A]. B[x], 
uiff: uiff(P;Q), 
l_disjoint: l_disjoint(T;l1;l2), 
all:
x:A. B[x], 
not:
A, 
and: P 
 Q, 
member: t 
 T, 
uimplies: b supposing a, 
prop:
, 
implies: P 
 Q, 
false: False, 
or: P 
 Q, 
iff: P 

 Q, 
rev_implies: P 
 Q
Lemmas : 
not_wf, 
l_member_wf, 
l_intersection_wf, 
deq_wf, 
cons_member, 
member-intersection, 
nil_member
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a,b:T  List].    uiff(l\_disjoint(T;a;b);l\_intersection(eq;a;b)  =  [])
Date html generated:
2011_08_10-AM-07_49_07
Last ObjectModification:
2011_06_18-AM-08_13_24
Home
Index