{ [ds:x:Id fp-Type]. [x:Id]. [T:Type].  (ds-agrees-on(ds;x;T)  ) }

{ Proof }



Definitions occuring in Statement :  ds-agrees-on: ds-agrees-on(ds;x;T) fpf: a:A fp-B[a] Id: Id uall: [x:A]. B[x] prop: member: t  T universe: Type
Definitions :  uall: [x:A]. B[x] member: t  T prop: ds-agrees-on: ds-agrees-on(ds;x;T) implies: P  Q so_lambda: x.t[x] so_apply: x[s] uimplies: b supposing a
Lemmas :  assert_wf fpf-dom_wf Id_wf id-deq_wf fpf-trivial-subtype-top ext-eq_wf fpf-ap_wf fpf_wf

\mforall{}[ds:x:Id  fp->  Type].  \mforall{}[x:Id].  \mforall{}[T:Type].    (ds-agrees-on(ds;x;T)  \mmember{}  \mBbbP{})


Date html generated: 2011_08_10-AM-08_13_09
Last ObjectModification: 2011_06_18-AM-08_28_06

Home Index