{ [Info:Type]. [es:EO+(Info)]. [X,Y:EClass(Top)].
    E(X) r E(Y) supposing e:E. ((e  X)  (e  Y)) }

{ Proof }



Definitions occuring in Statement :  es-E-interface: E(X) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E subtype_rel: A r B assert: b uimplies: b supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] implies: P  Q universe: Type
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a all: x:A. B[x] implies: P  Q es-E-interface: E(X) member: t  T prop: so_lambda: x y.t[x; y] so_apply: x[s1;s2] subtype: S  T guard: {T}
Lemmas :  assert_wf in-eclass_wf es-E_wf event-ordering+_inc eclass_wf top_wf event-ordering+_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y:EClass(Top)].
    E(X)  \msubseteq{}r  E(Y)  supposing  \mforall{}e:E.  ((\muparrow{}e  \mmember{}\msubb{}  X)  {}\mRightarrow{}  (\muparrow{}e  \mmember{}\msubb{}  Y))


Date html generated: 2011_08_16-PM-04_01_38
Last ObjectModification: 2011_06_20-AM-00_36_28

Home Index