{ [Info,A,B:Type]. [X:EClass(A)]. [Y:EClass(B)].
    ((X | Y)  EClass(one_or_both(A;B))) }

{ Proof }



Definitions occuring in Statement :  es-interface-or: (X | Y) eclass: EClass(A[eo; e]) uall: [x:A]. B[x] member: t  T universe: Type one_or_both: one_or_both(A;B)
Definitions :  oob-apply: oob-apply(xs;ys) bag: bag(T) eclass-compose2: eclass-compose2(f;X;Y) subtype: S  T event_ordering: EO es-E: E event-ordering+: EO+(Info) lambda: x.A[x] function: x:A  B[x] all: x:A. B[x] axiom: Ax es-interface-or: (X | Y) one_or_both: Error :one_or_both,  universe: Type uall: [x:A]. B[x] so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) isect: x:A. B[x] member: t  T equal: s = t tactic: Error :tactic
Lemmas :  eclass_wf es-E_wf event-ordering+_inc event-ordering+_wf eclass-compose2_wf Error :one_or_both_wf,  oob-apply_wf bag_wf

\mforall{}[Info,A,B:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].    ((X  |  Y)  \mmember{}  EClass(one\_or\_both(A;B)))


Date html generated: 2011_08_16-PM-04_22_36
Last ObjectModification: 2011_06_20-AM-00_48_45

Home Index