{ [Info:Type]. [es:EO+(Info)]. [A:Type]. [X:EClass(A)]. [e:E].
    X(e)  A supposing e  X }

{ Proof }



Definitions occuring in Statement :  eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uimplies: b supposing a uall: [x:A]. B[x] member: t  T universe: Type
Definitions :  real: grp_car: |g| subtype: S  T nat: natural_number: $n eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bnot: b bimplies: p  q band: p  q eq_int: (i = j) bor: p q set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B bag-size: bag-size(bs) int: all: x:A. B[x] axiom: Ax apply: f a bag-only: only(bs) prop: assert: b eclass: EClass(A[eo; e]) in-eclass: e  X eclass-val: X(e) uimplies: b supposing a equal: s = t universe: Type bag: bag(T) event_ordering: EO event-ordering+: EO+(Info) function: x:A  B[x] uall: [x:A]. B[x] isect: x:A. B[x] member: t  T es-E: E Unfolds: Error :Unfolds,  CollapseTHEN: Error :CollapseTHEN
Lemmas :  bag-only_wf assert_of_eq_int assert_wf eq_int_wf bag-size_wf nat_wf es-E_wf event-ordering+_inc bag_wf event-ordering+_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A:Type].  \mforall{}[X:EClass(A)].  \mforall{}[e:E].    X(e)  \mmember{}  A  supposing  \muparrow{}e  \mmember{}\msubb{}  X


Date html generated: 2011_08_16-PM-04_06_52
Last ObjectModification: 2011_06_20-AM-00_41_02

Home Index