{ es:EO. p:E  (E + Top). a,b,c:E.  (a pb  b pc  a pc) }

{ Proof }



Definitions occuring in Statement :  es-p-locl: e pe' es-E: E event_ordering: EO top: Top all: x:A. B[x] implies: P  Q function: x:A  B[x] union: left + right
Definitions :  product: x:A  B[x] nat_plus: exists: x:A. B[x] equal: s = t member: t  T function: x:A  B[x] all: x:A. B[x] event_ordering: EO top: Top union: left + right es-E: E subtype: S  T nat: p-fun-exp: f^n p-graph: p-graph(A;f) apply: f a universe: Type prop: subtype_rel: A r B strong-subtype: strong-subtype(A;B) record-select: r.x dep-isect: Error :dep-isect,  infix_ap: x f y eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ implies: P  Q es-p-locl: e pe' set: {x:A| B[x]}  less_than: a < b int: int_nzero: real: rationals: add: n + m cand: A c B assert: b lambda: x.A[x] decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  do-apply: do-apply(f;x) btrue: tt can-apply: can-apply(f;x) bool: void: Void isect: x:A. B[x] suptype: suptype(S; T) and: P  Q rev_implies: P  Q iff: P  Q primrec: primrec(n;b;c) sqequal: s ~ t outl: outl(x) le: A  B natural_number: $n guard: {T} false: False not: A true: True sq_type: SQType(T) isl: isl(x) limited-type: LimitedType squash: T
Lemmas :  do-apply_wf squash_wf bool_sq can-apply-fun-exp nat_wf le_wf p-fun-exp-add-sq bool_wf can-apply-fun-exp-add-iff assert_wf can-apply_wf nat_plus_properties member_wf assert_elim nat_plus_wf p-graph_wf p-graph_wf2 p-fun-exp_wf nat_plus_inc es-E_wf top_wf event_ordering_wf

\mforall{}es:EO.  \mforall{}p:E  {}\mrightarrow{}  (E  +  Top).  \mforall{}a,b,c:E.    (a  p<  b  {}\mRightarrow{}  b  p<  c  {}\mRightarrow{}  a  p<  c)


Date html generated: 2011_08_16-AM-11_15_10
Last ObjectModification: 2010_09_24-PM-08_45_37

Home Index