Nuprl Lemma : nat_plus_inc
ℕ+ ⊆r ℕ
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
member: t ∈ T
Lemmas referenced : 
nat_plus_subtype_nat, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
cut, 
hypothesisEquality, 
applyEquality, 
thin, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
sqequalRule
Latex:
\mBbbN{}\msupplus{}  \msubseteq{}r  \mBbbN{}
Date html generated:
2019_06_20-AM-11_33_33
Last ObjectModification:
2018_09_17-PM-05_36_19
Theory : int_1
Home
Index