{ es:EO. e1,e2,b:E.
    [Q:{e:E| loc(e) = loc(e1)}   {e:E| loc(e) = loc(e1)}   ]
      ((e1 <loc b)
       b loc e2 
       [e1,pred(b)]~([a,b].Q[a;b])+
       [b,e2]~([a,b].Q[a;b])+
       [e1,e2]~([a,b].Q[a;b])+) }

{ Proof }



Definitions occuring in Statement :  es-pplus: [e1,e2]~([a,b].p[a; b])+ es-le: e loc e'  es-locl: (e <loc e') es-pred: pred(e) es-loc: loc(e) es-E: E event_ordering: EO Id: Id uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies: P  Q set: {x:A| B[x]}  function: x:A  B[x] equal: s = t
Definitions :  all: x:A. B[x] uall: [x:A]. B[x] prop: implies: P  Q es-pplus: [e1,e2]~([a,b].p[a; b])+ so_apply: x[s1;s2] member: t  T so_lambda: x y.t[x; y] not: A assert: b bfalse: ff ifthenelse: if b then t else f fi  es-locl: (e <loc e') uimplies: b supposing a sq_type: SQType(T) guard: {T} false: False and: P  Q
Lemmas :  es-pplus_wf es-E_wf Id_wf es-loc_wf es-pred_wf subtype_base_sq bool_subtype_base false_wf es-le_wf es-locl_wf event_ordering_wf es-locl-first es-loc-pred bool_wf es-pstar-q-partition

\mforall{}es:EO.  \mforall{}e1,e2,b:E.
    \mforall{}[Q:\{e:E|  loc(e)  =  loc(e1)\}    {}\mrightarrow{}  \{e:E|  loc(e)  =  loc(e1)\}    {}\mrightarrow{}  \mBbbP{}]
        ((e1  <loc  b)
        {}\mRightarrow{}  b  \mleq{}loc  e2 
        {}\mRightarrow{}  [e1,pred(b)]\msim{}([a,b].Q[a;b])+
        {}\mRightarrow{}  [b,e2]\msim{}([a,b].Q[a;b])+
        {}\mRightarrow{}  [e1,e2]\msim{}([a,b].Q[a;b])+)


Date html generated: 2011_08_16-AM-10_58_24
Last ObjectModification: 2011_06_18-AM-09_31_19

Home Index