{ Info,A,B,C:Type. f:A + Top  B + Top  C + Top  (C + Top). X:EClass(A).
  Y:EClass(B).
    ((f)(X,(Y)',self')  EClass(C)) }

{ Proof }



Definitions occuring in Statement :  es-rec-combined-interface1-1: (f)(X,(Y)',self') eclass: EClass(A[eo; e]) top: Top all: x:A. B[x] member: t  T function: x:A  B[x] union: left + right universe: Type
Definitions :  equal: s = t member: t  T function: x:A  B[x] all: x:A. B[x] top: Top universe: Type eclass: EClass(A[eo; e]) int_seg: {i..j} implies: P  Q false: False not: A and: P  Q le: A  B lelt: i  j < k int: set: {x:A| B[x]}  apply: f a union: left + right sq_type: SQType(T) inl: inl x  so_lambda: x.t[x] decide: case b of inl(x) =s[x] | inr(y) =t[y] limited-type: LimitedType prop: guard: {T} less_than: a < b product: x:A  B[x] void: Void p-outcome: Outcome subtype_rel: A r B strong-subtype: strong-subtype(A;B) subtype: S  T nat: rationals: real: add: n + m es-rec-combined-interface: f(Y;(Z)';self') bool: event-ordering+: EO+(Info) es-rec-combined-interface1-1: (f)(X,(Y)',self') event_ordering: EO es-E: E so_lambda: x y.t[x; y] fpf: a:A fp-B[a] MaAuto: Error :MaAuto,  BHyp: Error :BHyp,  CollapseTHEN: Error :CollapseTHEN,  lambda: x.A[x] natural_number: $n CollapseTHENA: Error :CollapseTHENA,  Unfold: Error :Unfold,  Auto: Error :Auto
Lemmas :  eclass_wf es-E_wf event-ordering+_inc event-ordering+_wf es-rec-combined-interface_wf nat_wf le_wf decide_wf int_seg_wf member_wf top_wf

\mforall{}Info,A,B,C:Type.  \mforall{}f:A  +  Top  {}\mrightarrow{}  B  +  Top  {}\mrightarrow{}  C  +  Top  {}\mrightarrow{}  (C  +  Top).  \mforall{}X:EClass(A).  \mforall{}Y:EClass(B).
    ((f)(X,(Y)',self')  \mmember{}  EClass(C))


Date html generated: 2010_08_27-PM-02_40_52
Last ObjectModification: 2010_03_24-PM-12_36_36

Home Index