{ [lhs:E#Lhs]. [rsh,body:esharp_exp()].
    (esharplet(lhs;rsh;body)  esharp_exp()) }

{ Proof }



Definitions occuring in Statement :  esharplet: esharplet(lhs;rsh;body) esharp_exp: esharp_exp() esharp-lhs: E#Lhs uall: [x:A]. B[x] member: t  T
Definitions :  tag-by: zT ldag: LabeledDAG(T) labeled-graph: LabeledGraph(T) record+: record+ record: record(x.T[x]) fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B rev_implies: P  Q or: P  Q implies: P  Q iff: P  Q bag: bag(T) set: {x:A| B[x]}  top: Top true: True universe: Type prop: so_lambda: x.t[x] type-monotone: Monotone(T.F[T]) eclass: EClass(A[eo; e]) fpf: a:A fp-B[a] type-expr: Error :type-expr,  list: type List strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a and: P  Q uiff: uiff(P;Q) subtype_rel: A r B decision: Decision function: x:A  B[x] all: x:A. B[x] axiom: Ax pair: <a, b> inr: inr x  esharp_exp: esharp_exp() esharplet: esharplet(lhs;rsh;body) equal: s = t uall: [x:A]. B[x] member: t  T rec: rec(x.A[x]) base: Base union: left + right atom: Atom product: x:A  B[x] esharp-lhs: E#Lhs isect: x:A. B[x]
Lemmas :  esharp-lhs_wf base_wf subtype_rel_wf uall_wf type-monotone_wf member_wf subtype_rel_sum subtype_rel_simple_product

\mforall{}[lhs:E\#Lhs].  \mforall{}[rsh,body:esharp\_exp()].    (esharplet(lhs;rsh;body)  \mmember{}  esharp\_exp())


Date html generated: 2011_08_17-PM-05_14_02
Last ObjectModification: 2011_02_03-PM-04_32_20

Home Index