{ 
[M,E:Type 
 Type].
    (
[g:
T:Type. (T 
 E[T])]. 
[f:
T:Type. (M[T] 
 
)].
     
[P:process(P.M[P];P.E[P])].
       (forkable-process(f;g;P) 
 process(P.M[P];P.E[P]))) supposing 
       (Continuous+(T.E[T]) and 
       Continuous+(T.M[T])) }
{ Proof }
Definitions occuring in Statement : 
forkable-process: forkable-process(f;g;P), 
process: process(P.M[P];P.E[P]), 
strong-type-continuous: Continuous+(T.F[T]), 
bool:
, 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
so_apply: x[s], 
member: t 
 T, 
isect:
x:A. B[x], 
function: x:A 
 B[x], 
universe: Type
Definitions : 
uall:
[x:A]. B[x], 
uimplies: b supposing a, 
so_apply: x[s], 
member: t 
 T, 
forkable-process: forkable-process(f;g;P), 
so_lambda: 
x.t[x], 
so_lambda: 
x y.t[x; y], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
all:
x:A. B[x], 
implies: P 
 Q, 
so_apply: x[s1;s2], 
so_apply: x[s1;s2;s3], 
prop:
Lemmas : 
recprocess_wf, 
continuous-id, 
process_wf, 
ifthenelse_wf, 
bool_wf, 
strong-type-continuous_wf
\mforall{}[M,E:Type  {}\mrightarrow{}  Type].
    (\mforall{}[g:\mcap{}T:Type.  (T  {}\mrightarrow{}  E[T])].  \mforall{}[f:\mcap{}T:Type.  (M[T]  {}\mrightarrow{}  \mBbbB{})].  \mforall{}[P:process(P.M[P];P.E[P])].
          (forkable-process(f;g;P)  \mmember{}  process(P.M[P];P.E[P])))  supposing 
          (Continuous+(T.E[T])  and 
          Continuous+(T.M[T]))
Date html generated:
2011_08_16-AM-09_54_08
Last ObjectModification:
2011_06_18-AM-08_36_19
Home
Index