{ [A:Type]
    eq:EqDecider(A). L:A List. v:Top. x:A.
      (x  dom(L |-fpf-v)  (x  L)) }

{ Proof }



Definitions occuring in Statement :  fpf-const: L |-fpf-v fpf-dom: x  dom(f) assert: b uall: [x:A]. B[x] top: Top all: x:A. B[x] iff: P  Q list: type List universe: Type l_member: (x  l) deq: EqDecider(T)
Definitions :  strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A uimplies: b supposing a uiff: uiff(P;Q) subtype_rel: A r B less_than: a < b cand: A c B deq-member: deq-member(eq;x;L) fpf-const: L |-fpf-v fpf-dom: x  dom(f) universe: Type deq: EqDecider(T) list: type List top: Top all: x:A. B[x] iff: P  Q and: P  Q rev_implies: P  Q implies: P  Q function: x:A  B[x] prop: l_member: (x  l) exists: x:A. B[x] product: x:A  B[x] nat: set: {x:A| B[x]}  assert: b ifthenelse: if b then t else f fi  decide: case b of inl(x) =s[x] | inr(y) =t[y] true: True member: t  T equal: s = t false: False void: Void uall: [x:A]. B[x] isect: x:A. B[x] Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic
Lemmas :  assert_witness nat_wf assert_wf false_wf ifthenelse_wf deq-member_wf true_wf l_member_wf top_wf deq_wf assert-deq-member

\mforall{}[A:Type].  \mforall{}eq:EqDecider(A).  \mforall{}L:A  List.  \mforall{}v:Top.  \mforall{}x:A.    (\muparrow{}x  \mmember{}  dom(L  |-fpf->  v)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L))


Date html generated: 2011_08_10-AM-08_02_31
Last ObjectModification: 2011_06_18-AM-08_20_30

Home Index