{ 
[X,Y:Type]. 
[eq:EqDecider(Y)]. 
[f:x:X fp-> Top]. 
[x:Y].
    {x 
 X supposing 
x 
 dom(f)} supposing strong-subtype(X;Y) }
{ Proof }
Definitions occuring in Statement : 
fpf-dom: x 
 dom(f), 
fpf: a:A fp-> B[a], 
assert:
b, 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
top: Top, 
guard: {T}, 
member: t 
 T, 
universe: Type, 
deq: EqDecider(T), 
strong-subtype: strong-subtype(A;B)
Definitions : 
guard: {T}
Lemmas : 
fpf-dom-type
\mforall{}[X,Y:Type].  \mforall{}[eq:EqDecider(Y)].  \mforall{}[f:x:X  fp->  Top].  \mforall{}[x:Y].
    \{x  \mmember{}  X  supposing  \muparrow{}x  \mmember{}  dom(f)\}  supposing  strong-subtype(X;Y)
Date html generated:
2011_08_10-AM-07_55_15
Last ObjectModification:
2011_06_18-AM-08_16_32
Home
Index