{ [X,Y:Type]. [eq:EqDecider(Y)]. [f:x:X fp-Top]. [x:Y].
    {x  X supposing x  dom(f)} supposing strong-subtype(X;Y) }

{ Proof }



Definitions occuring in Statement :  fpf-dom: x  dom(f) fpf: a:A fp-B[a] assert: b uimplies: b supposing a uall: [x:A]. B[x] top: Top guard: {T} member: t  T universe: Type deq: EqDecider(T) strong-subtype: strong-subtype(A;B)
Definitions :  guard: {T}
Lemmas :  fpf-dom-type

\mforall{}[X,Y:Type].  \mforall{}[eq:EqDecider(Y)].  \mforall{}[f:x:X  fp->  Top].  \mforall{}[x:Y].
    \{x  \mmember{}  X  supposing  \muparrow{}x  \mmember{}  dom(f)\}  supposing  strong-subtype(X;Y)


Date html generated: 2011_08_10-AM-07_55_15
Last ObjectModification: 2011_06_18-AM-08_16_32

Home Index