{ [A:Type]. [B,eq,g:Top].    g }

{ Proof }



Definitions occuring in Statement :  fpf-sub: f  g fpf-empty: uall: [x:A]. B[x] top: Top so_apply: x[s] universe: Type
Definitions :  isect: x:A. B[x] void: Void true: True decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  member: t  T equal: s = t uall: [x:A]. B[x] fpf-empty: fpf-sub: f  g lambda: x.A[x] fpf_ap_pair: fpf_ap_pair{fpf_ap_pair_compseq_tag_def:o}(x; eq; f; d) fpf-dom: x  dom(f) assert: b top: Top universe: Type all: x:A. B[x] implies: P  Q function: x:A  B[x] false: False prop: cand: A c B product: x:A  B[x] Auto: Error :Auto,  RepUR: Error :RepUR,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic
Lemmas :  top_wf assert_witness false_wf

\mforall{}[A:Type].  \mforall{}[B,eq,g:Top].    \motimes{}  \msubseteq{}  g


Date html generated: 2011_08_10-AM-07_57_04
Last ObjectModification: 2011_06_18-AM-08_17_27

Home Index