{ f,g:x:Knd fp-Type. x:Knd.
    (x  dom(f  g)  (x  dom(f))  (x  dom(g))) }

{ Proof }



Definitions occuring in Statement :  fpf-join: f  g fpf-dom: x  dom(f) fpf: a:A fp-B[a] Kind-deq: KindDeq Knd: Knd assert: b all: x:A. B[x] iff: P  Q or: P  Q universe: Type
Definitions :  member: t  T so_lambda: x.t[x] all: x:A. B[x] rev_implies: P  Q iff: P  Q implies: P  Q prop: and: P  Q or: P  Q so_apply: x[s]
Lemmas :  fpf_wf Knd_wf fpf-dom_wf fpf-join_wf assert_wf Kind-deq_wf top_wf fpf-trivial-subtype-top fpf-join-dom iff_functionality_wrt_iff

\mforall{}f,g:x:Knd  fp->  Type.  \mforall{}x:Knd.    (\muparrow{}x  \mmember{}  dom(f  \moplus{}  g)  \mLeftarrow{}{}\mRightarrow{}  (\muparrow{}x  \mmember{}  dom(f))  \mvee{}  (\muparrow{}x  \mmember{}  dom(g)))


Date html generated: 2010_08_27-AM-12_00_18
Last ObjectModification: 2008_02_27-PM-09_46_01

Home Index