{ f,g:x:Id fp-Type. x:Id.
    (x  dom(f  g)  (x  dom(f))  (x  dom(g))) }

{ Proof }



Definitions occuring in Statement :  fpf-join: f  g fpf-dom: x  dom(f) fpf: a:A fp-B[a] id-deq: IdDeq Id: Id assert: b all: x:A. B[x] iff: P  Q or: P  Q universe: Type
Definitions :  all: x:A. B[x] member: t  T so_lambda: x.t[x] prop: or: P  Q iff: P  Q and: P  Q implies: P  Q rev_implies: P  Q so_apply: x[s]
Lemmas :  Id_wf fpf_wf assert_wf fpf-dom_wf id-deq_wf fpf-join_wf top_wf fpf-trivial-subtype-top iff_functionality_wrt_iff fpf-join-dom

\mforall{}f,g:x:Id  fp->  Type.  \mforall{}x:Id.    (\muparrow{}x  \mmember{}  dom(f  \moplus{}  g)  \mLeftarrow{}{}\mRightarrow{}  (\muparrow{}x  \mmember{}  dom(f))  \mvee{}  (\muparrow{}x  \mmember{}  dom(g)))


Date html generated: 2010_08_27-AM-12_00_16
Last ObjectModification: 2008_02_27-PM-09_45_59

Home Index