{ [A:Type]
    eq:EqDecider(A)
      [B:A  Type]
        L:a:A fp-B[a] List. x:A.
          ((x  fpf-domain((L)))  (fL. (x  fpf-domain(f)))) }

{ Proof }



Definitions occuring in Statement :  fpf-join-list: (L) fpf-domain: fpf-domain(f) fpf: a:A fp-B[a] uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: P  Q function: x:A  B[x] list: type List universe: Type l_exists: (xL. P[x]) l_member: (x  l) deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] so_apply: x[s] member: t  T so_lambda: x.t[x] iff: P  Q l_exists: (xL. P[x]) prop: and: P  Q implies: P  Q rev_implies: P  Q subtype: S  T exists: x:A. B[x] cand: A c B
Lemmas :  fpf-join-list-dom fpf_wf deq_wf assert_wf fpf-dom_wf fpf-join-list_wf top_wf fpf-trivial-subtype-top l_member_wf fpf-domain_wf l_exists_wf iff_functionality_wrt_iff member-fpf-domain

\mforall{}[A:Type]
    \mforall{}eq:EqDecider(A)
        \mforall{}[B:A  {}\mrightarrow{}  Type]
            \mforall{}L:a:A  fp->  B[a]  List.  \mforall{}x:A.    ((x  \mmember{}  fpf-domain(\moplus{}(L)))  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}f\mmember{}L.  (x  \mmember{}  fpf-domain(f))))


Date html generated: 2011_08_10-AM-08_01_02
Last ObjectModification: 2011_06_18-AM-08_19_48

Home Index