{ [A:Type]. [eq:EqDecider(A)]. [B:A  Type]. [g:x:A fp-B[x]].
    (fpf-normalize(eq;g)  x:A fp-B[x]) }

{ Proof }



Definitions occuring in Statement :  fpf-normalize: fpf-normalize(eq;g) fpf: a:A fp-B[a] uall: [x:A]. B[x] so_apply: x[s] member: t  T function: x:A  B[x] universe: Type deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] so_apply: x[s] member: t  T fpf-normalize: fpf-normalize(eq;g) pi2: snd(t) pi1: fst(t) so_lambda: x.t[x] fpf: a:A fp-B[a] prop:
Lemmas :  list-subtype reduce_wf l_member_wf fpf-join_wf fpf-single_wf fpf-empty_wf fpf_wf deq_wf

\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[g:x:A  fp->  B[x]].
    (fpf-normalize(eq;g)  \mmember{}  x:A  fp->  B[x])


Date html generated: 2011_08_10-AM-08_11_40
Last ObjectModification: 2011_06_18-AM-08_27_01

Home Index