{ [A:Type]. [P:A  ]. [eq:EqDecider(A)]. [B:A  Type].
  [f,g:x:A fp-B[x]].
    f || fpf-restrict(g;P) supposing f || g }

{ Proof }



Definitions occuring in Statement :  fpf-restrict: fpf-restrict(f;P) fpf-compatible: f || g fpf: a:A fp-B[a] bool: uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] universe: Type deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] so_apply: x[s] uimplies: b supposing a fpf-compatible: f || g all: x:A. B[x] implies: P  Q and: P  Q member: t  T so_lambda: x.t[x] prop: uiff: uiff(P;Q) guard: {T}
Lemmas :  fpf-restrict-dom assert_wf fpf-dom_wf fpf-trivial-subtype-top fpf-restrict_wf2 top_wf fpf-ap_wf fpf_wf deq_wf bool_wf

\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f,g:x:A  fp->  B[x]].
    f  ||  fpf-restrict(g;P)  supposing  f  ||  g


Date html generated: 2011_08_10-AM-08_09_58
Last ObjectModification: 2011_06_18-AM-08_26_08

Home Index