{ [Info,T:Type]. [f:T  ]. [es:EO+(Info)]. [lb:]. [X:EClass(T)].
  [e:E(X)]. [n:].
    uiff((maximum f[v]  lb with v from X)(e)  n;([e':E(X)]
                                                     f[X(e')]  n 
                                                     supposing e' loc e )
     (lb  n)) }

{ Proof }



Definitions occuring in Statement :  imax-class: (maximum f[v]  lb with v from X) es-E-interface: E(X) eclass-val: X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-le: e loc e'  uiff: uiff(P;Q) uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] le: A  B and: P  Q function: x:A  B[x] int: universe: Type
Definitions :  so_lambda: x.t[x] member: t  T prop: and: P  Q iff: P  Q rev_implies: P  Q so_apply: x[s] implies: P  Q all: x:A. B[x] es-E-interface: E(X) subtype: S  T
Lemmas :  es-interface-predecessors_wf event-ordering+_inc es-loc_wf Id_wf es-E-interface_wf l_member-settype

\mforall{}[Info,T:Type].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[es:EO+(Info)].  \mforall{}[lb:\mBbbZ{}].  \mforall{}[X:EClass(T)].  \mforall{}[e:E(X)].  \mforall{}[n:\mBbbZ{}].
    uiff((maximum  f[v]  \mgeq{}  lb  with  v  from  X)(e)  \mleq{}  n;(\mforall{}[e':E(X)].  f[X(e')]  \mleq{}  n  supposing  e'  \mleq{}loc  e  )
    \mwedge{}  (lb  \mleq{}  n))


Date html generated: 2011_08_16-PM-05_19_59
Last ObjectModification: 2011_06_20-AM-01_21_12

Home Index