{ [A,C:Type]. [n:]. [B:n  Type]. [ds:k:n  dataflow(A;B[k])].
  [F:k:n  B[k]  C]. [L:A List].
    (better-parallel-dataflow(
     n;ds;
     F)*(L)
    = better-parallel-dataflow(
      n;if null(L) then ds else k.ds k*(L) fi ;
      F)) }

{ Proof }



Definitions occuring in Statement :  better-parallel-dataflow: better-parallel-dataflow iterate-dataflow: P*(inputs) dataflow: dataflow(A;B) null: null(as) ifthenelse: if b then t else f fi  int_seg: {i..j} nat: uall: [x:A]. B[x] so_apply: x[s] apply: f a lambda: x.A[x] function: x:A  B[x] list: type List natural_number: $n universe: Type equal: s = t
Definitions :  uall: [x:A]. B[x] so_apply: x[s] better-parallel-dataflow: better-parallel-dataflow ifthenelse: if b then t else f fi  null: null(as) member: t  T all: x:A. B[x] btrue: tt bfalse: ff so_lambda: x y.t[x; y] so_lambda: x.t[x] pi1: fst(t) top: Top true: True subtype: S  T rev_implies: P  Q iff: P  Q and: P  Q implies: P  Q squash: T nat: so_apply: x[s1;s2] prop:
Lemmas :  rec-dataflow_wf eval-parallel-dataflow_wf int_seg_wf dataflow_wf nat_wf better-parallel-dataflow_wf pi1_wf_top dataflow-ap_wf iterate-dataflow_wf squash_wf true_wf top_wf eval-parallel-dataflow-property

\mforall{}[A,C:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[B:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[ds:k:\mBbbN{}n  {}\mrightarrow{}  dataflow(A;B[k])].  \mforall{}[F:k:\mBbbN{}n  {}\mrightarrow{}  B[k]  {}\mrightarrow{}  C].
\mforall{}[L:A  List].
    (better-parallel-dataflow(
      n;ds;
      F)*(L)
    =  better-parallel-dataflow(
        n;if  null(L)  then  ds  else  \mlambda{}k.ds  k*(L)  fi  ;
        F))


Date html generated: 2011_08_10-AM-08_16_25
Last ObjectModification: 2011_06_18-AM-08_30_59

Home Index