{ [L:Top List]. (null-dataflow()*(L) ~ null-dataflow()) }

{ Proof }



Definitions occuring in Statement :  null-dataflow: null-dataflow() iterate-dataflow: P*(inputs) uall: [x:A]. B[x] top: Top list: type List sqequal: s ~ t
Definitions :  tactic: Error :tactic,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  sqequal: s ~ t list: type List top: Top null-dataflow: null-dataflow() iterate-dataflow: P*(inputs) dataflow-ap: df(a) pi1: fst(t) iter_df_cons: iter_df_cons{iter_df_cons_compseq_tag_def:o}(as; a; P) iter_df_nil: iter_df_nil{iter_df_nil_compseq_tag_def:o}(P) equal: s = t member: t  T function: x:A  B[x] all: x:A. B[x] isect: x:A. B[x] uall: [x:A]. B[x] universe: Type prop: so_lambda: x.t[x] subtype_rel: A r B uiff: uiff(P;Q) and: P  Q product: x:A  B[x] uimplies: b supposing a less_than: a < b not: A ge: i  j  le: A  B strong-subtype: strong-subtype(A;B) rec_dataflow_ap: rec_dataflow_ap_compseq_tag_def
Lemmas :  top_wf uall_wf

\mforall{}[L:Top  List].  (null-dataflow()*(L)  \msim{}  null-dataflow())


Date html generated: 2011_08_10-AM-08_18_02
Last ObjectModification: 2011_06_16-PM-03_33_28

Home Index