{ 
[T:Type]. 
[eq:EqDecider(T)]. 
[a,b:T List].
    l_disjoint(T;a;b) supposing l_disjoint(T;b;l_intersection(eq;a;b)) }
{ Proof }
Definitions occuring in Statement : 
l_intersection: l_intersection(eq;L1;L2), 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
list: type List, 
universe: Type, 
l_disjoint: l_disjoint(T;l1;l2), 
deq: EqDecider(T)
Definitions : 
rev_implies: P 
 Q, 
iff: P 

 Q, 
nat:
, 
cand: A c
 B, 
exists:
x:A. B[x], 
strong-subtype: strong-subtype(A;B), 
equal: s = t, 
le: A 
 B, 
ge: i 
 j , 
less_than: a < b, 
uiff: uiff(P;Q), 
assert:
b, 
set: {x:A| B[x]} , 
subtype_rel: A 
r B, 
l_intersection: l_intersection(eq;L1;L2), 
l_member: (x 
 l), 
product: x:A 
 B[x], 
and: P 
 Q, 
universe: Type, 
not:
A, 
implies: P 
 Q, 
false: False, 
void: Void, 
deq: EqDecider(T), 
uall:
[x:A]. B[x], 
list: type List, 
uimplies: b supposing a, 
prop:
, 
isect:
x:A. B[x], 
l_disjoint: l_disjoint(T;l1;l2), 
all:
x:A. B[x], 
lambda:
x.A[x], 
function: x:A 
 B[x], 
member: t 
 T, 
Auto: Error :Auto, 
CollapseTHEN: Error :CollapseTHEN, 
ParallelOp: Error :ParallelOp, 
RepeatFor: Error :RepeatFor
Lemmas : 
l_disjoint_wf, 
l_intersection_wf, 
deq_wf, 
not_wf, 
false_wf, 
l_member_wf, 
nat_wf, 
member-intersection
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a,b:T  List].
    l\_disjoint(T;a;b)  supposing  l\_disjoint(T;b;l\_intersection(eq;a;b))
Date html generated:
2011_08_10-AM-07_49_17
Last ObjectModification:
2011_06_18-AM-08_13_27
Home
Index