{ [Info:Type]
    es:EO+(Info). X:EClass(Top).
      [P:E(X)  ]
        e:E. ((e'(X)(e). P[e'])  e':E(X). (e' loc e   P[e'])) }

{ Proof }



Definitions occuring in Statement :  es-interface-predecessors: (X)(e) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-le: e loc e'  es-E: E uall: [x:A]. B[x] top: Top prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: P  Q and: P  Q function: x:A  B[x] universe: Type l_exists: (xL. P[x])
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] prop: iff: P  Q l_exists: (xL. P[x]) so_apply: x[s] exists: x:A. B[x] and: P  Q implies: P  Q rev_implies: P  Q member: t  T cand: A c B subtype: S  T so_lambda: x y.t[x; y] es-E-interface: E(X) so_apply: x[s1;s2]
Lemmas :  member-interface-predecessors2 es-le_wf es-E-interface_wf l_member_wf es-interface-predecessors_wf Id_wf es-loc_wf es-E_wf event-ordering+_inc eclass_wf top_wf event-ordering+_wf member-interface-predecessors

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).
        \mforall{}[P:E(X)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}e:E.  ((\mexists{}e'\mmember{}\mleq{}(X)(e).  P[e'])  \mLeftarrow{}{}\mRightarrow{}  \mexists{}e':E(X).  (e'  \mleq{}loc  e    \mwedge{}  P[e']))


Date html generated: 2011_08_16-PM-05_19_51
Last ObjectModification: 2011_06_20-AM-01_21_03

Home Index