{ [T:Type]. [dT:EqDecider(T)]. [L:T List]. [x:T].
    index(L;x)  ||L|| supposing (x  L) }

{ Proof }



Definitions occuring in Statement :  l_index: index(L;x) length: ||as|| int_seg: {i..j} uimplies: b supposing a uall: [x:A]. B[x] member: t  T list: type List natural_number: $n universe: Type l_member: (x  l) deq: EqDecider(T)
Definitions :  member: t  T l_index: index(L;x) top: Top all: x:A. B[x] subtype: S  T exists: x:A. B[x] int_seg: {i..j} lelt: i  j < k and: P  Q prop: uall: [x:A]. B[x] uimplies: b supposing a l_member: (x  l) nat: cand: A c B rev_implies: P  Q iff: P  Q implies: P  Q
Lemmas :  mu-bound length_wf_nat top_wf eqof_wf select_wf int_seg_wf length_wf1 l_member_wf deq_wf le_wf assert_wf iff_weakening_uiff uiff_inversion deq_property

\mforall{}[T:Type].  \mforall{}[dT:EqDecider(T)].  \mforall{}[L:T  List].  \mforall{}[x:T].    index(L;x)  \mmember{}  \mBbbN{}||L||  supposing  (x  \mmember{}  L)


Date html generated: 2011_08_10-AM-07_51_03
Last ObjectModification: 2011_06_18-AM-08_13_51

Home Index