{ [T:Type]. [g:LabeledDAG(T)]. [y:lg-size(g)]. [x:y].
    (lg-add(g;x;y)  LabeledDAG(T)) }

{ Proof }



Definitions occuring in Statement :  ldag: LabeledDAG(T) lg-add: lg-add(g;a;b) lg-size: lg-size(g) int_seg: {i..j} uall: [x:A]. B[x] member: t  T natural_number: $n universe: Type
Definitions :  uall: [x:A]. B[x] ldag: LabeledDAG(T) int_seg: {i..j} member: t  T lelt: i  j < k and: P  Q le: A  B not: A implies: P  Q false: False nat: prop: uimplies: b supposing a
Lemmas :  lg-add_wf lg-size_wf nat_wf le_wf is-dag-add is-dag_wf int_seg_wf ldag_wf

\mforall{}[T:Type].  \mforall{}[g:LabeledDAG(T)].  \mforall{}[y:\mBbbN{}lg-size(g)].  \mforall{}[x:\mBbbN{}y].    (lg-add(g;x;y)  \mmember{}  LabeledDAG(T))


Date html generated: 2011_08_16-PM-06_43_39
Last ObjectModification: 2011_06_18-AM-10_55_14

Home Index