{ [T:Type]. [g:LabeledGraph(T)]. [y:lg-size(g)]. [x:y].
    is-dag(lg-add(g;x;y)) supposing is-dag(g) }

{ Proof }



Definitions occuring in Statement :  is-dag: is-dag(g) lg-add: lg-add(g;a;b) lg-size: lg-size(g) labeled-graph: LabeledGraph(T) int_seg: {i..j} uimplies: b supposing a uall: [x:A]. B[x] natural_number: $n universe: Type
Definitions :  uall: [x:A]. B[x] int_seg: {i..j} uimplies: b supposing a is-dag: is-dag(g) member: t  T all: x:A. B[x] implies: P  Q lelt: i  j < k and: P  Q or: P  Q iff: P  Q le: A  B not: A false: False prop: nat: guard: {T}
Lemmas :  lg-size-add lg-edge-add le_wf lg-edge_wf lg-add_wf int_seg_wf lg-size_wf nat_wf is-dag_wf labeled-graph_wf

\mforall{}[T:Type].  \mforall{}[g:LabeledGraph(T)].  \mforall{}[y:\mBbbN{}lg-size(g)].  \mforall{}[x:\mBbbN{}y].
    is-dag(lg-add(g;x;y))  supposing  is-dag(g)


Date html generated: 2011_08_16-PM-06_42_52
Last ObjectModification: 2011_06_20-AM-02_01_51

Home Index