{ [T:Type]
    g:LabeledGraph(T). i,j,a,b:lg-size(g).
      (lg-edge(lg-add(g;i;j);a;b)  lg-edge(g;a;b)  ((a = i)  (b = j))) }

{ Proof }



Definitions occuring in Statement :  lg-edge: lg-edge(g;a;b) lg-add: lg-add(g;a;b) lg-size: lg-size(g) labeled-graph: LabeledGraph(T) int_seg: {i..j} uall: [x:A]. B[x] all: x:A. B[x] iff: P  Q or: P  Q and: P  Q natural_number: $n int: universe: Type equal: s = t
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] int_seg: {i..j} iff: P  Q lg-edge: lg-edge(g;a;b) lg-add: lg-add(g;a;b) or: P  Q and: P  Q lg-in-edges: lg-in-edges(g;x) spreadn: spread3 ifthenelse: if b then t else f fi  pi1: fst(t) pi2: snd(t) top: Top member: t  T le: A  B lelt: i  j < k not: A implies: P  Q false: False prop: btrue: tt rev_implies: P  Q bfalse: ff cand: A c B guard: {T} labeled-graph: LabeledGraph(T) nat: uimplies: b supposing a bool: unit: Unit decidable: Dec(P) lg-size: lg-size(g) it:
Lemmas :  select-mklist length_wf_nat int_seg_wf nat_wf le_wf select_wf eq_int_wf bool_wf iff_weakening_uiff uiff_transitivity assert_wf eqtt_to_assert assert_of_eq_int not_wf bnot_wf eqff_to_assert assert_of_bnot not_functionality_wrt_uiff l_member_wf lg-size_wf labeled-graph_wf decidable__l_member decidable__equal_int iff_functionality_wrt_iff cons_member

\mforall{}[T:Type]
    \mforall{}g:LabeledGraph(T).  \mforall{}i,j,a,b:\mBbbN{}lg-size(g).
        (lg-edge(lg-add(g;i;j);a;b)  \mLeftarrow{}{}\mRightarrow{}  lg-edge(g;a;b)  \mvee{}  ((a  =  i)  \mwedge{}  (b  =  j)))


Date html generated: 2011_08_16-PM-06_39_59
Last ObjectModification: 2011_06_20-AM-01_58_57

Home Index