{ [T:Type]
    g:LabeledGraph(T). a,b:lg-size(g).
      (lg-edge(g;a;b)  lg-connected(g;a;b)) }

{ Proof }



Definitions occuring in Statement :  lg-connected: lg-connected(g;a;b) lg-edge: lg-edge(g;a;b) lg-size: lg-size(g) labeled-graph: LabeledGraph(T) int_seg: {i..j} uall: [x:A]. B[x] all: x:A. B[x] implies: P  Q natural_number: $n universe: Type
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] implies: P  Q lg-connected: lg-connected(g;a;b) member: t  T prop: and: P  Q infix_ap: x f y exists: x:A. B[x] nat: uimplies: b supposing a iff: P  Q rev_implies: P  Q
Lemmas :  lg-edge_wf int_seg_wf lg-size_wf nat_wf labeled-graph_wf rel_star_weakening rel_star_wf rel_plus_iff

\mforall{}[T:Type].  \mforall{}g:LabeledGraph(T).  \mforall{}a,b:\mBbbN{}lg-size(g).    (lg-edge(g;a;b)  {}\mRightarrow{}  lg-connected(g;a;b))


Date html generated: 2011_08_16-PM-06_40_33
Last ObjectModification: 2011_06_20-AM-01_59_35

Home Index