{ [B:Type]. [n:]. [A:n  Type]. [bags:k:n  bag(A k)].
  [f:Id  funtype(n;A;B)]. [b:B]. [l:Id].
    (bag-member(B;b;lifting-loc-gen-rev(n;bags;l;f))
     lst:k:n  (A k)
          (([k:n]. bag-member(A k;lst k;bags k))
           ((uncurry-rev(n;f l) lst) = b))) }

{ Proof }



Definitions occuring in Statement :  lifting-loc-gen-rev: lifting-loc-gen-rev(n;bags;loc;f) uncurry-rev: uncurry-rev(n;f) Id: Id int_seg: {i..j} nat: uall: [x:A]. B[x] exists: x:A. B[x] iff: P  Q squash: T and: P  Q apply: f a function: x:A  B[x] natural_number: $n universe: Type equal: s = t bag-member: bag-member(T;x;bs) bag: bag(T) funtype: funtype(n;A;T)
Definitions :  CollapseTHENA: Error :CollapseTHENA,  Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  apply: f a and: P  Q iff: P  Q isect: x:A. B[x] uall: [x:A]. B[x] int_seg: {i..j} bag: bag(T) function: x:A  B[x] universe: Type set: {x:A| B[x]}  squash: T implies: P  Q product: x:A  B[x] nat: quotient: x,y:A//B[x; y] funtype: funtype(n;A;T) Id: Id primrec: primrec(n;b;c) atom: Atom$n member: t  T equal: s = t all: x:A. B[x] natural_number: $n int: subtype: S  T grp_car: |g| real: lifting-loc-gen-rev: lifting-loc-gen-rev(n;bags;loc;f)
Lemmas :  lifting-member-simple nat_wf int_seg_wf bag_wf funtype_wf Id_wf

\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[bags:k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)].  \mforall{}[f:Id  {}\mrightarrow{}  funtype(n;A;B)].  \mforall{}[b:B].
\mforall{}[l:Id].
    (bag-member(B;b;lifting-loc-gen-rev(n;bags;l;f))
    \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}\mexists{}lst:k:\mBbbN{}n  {}\mrightarrow{}  (A  k)
                ((\mforall{}[k:\mBbbN{}n].  bag-member(A  k;lst  k;bags  k))  \mwedge{}  ((uncurry-rev(n;f  l)  lst)  =  b)))


Date html generated: 2011_08_17-PM-06_07_32
Last ObjectModification: 2011_06_01-PM-01_12_57

Home Index