{ [B:Type]. [n:]. [A:n  Type]. [bags:k:n  bag(A k)].
  [f:funtype(n;A;B)]. [b:B].
    (bag-member(B;b;lifting-gen-rev(n;f;bags))
     lst:k:n  (A k)
          (([k:n]. bag-member(A k;lst k;bags k))
           ((uncurry-rev(n;f) lst) = b))) }

{ Proof }



Definitions occuring in Statement :  uncurry-rev: uncurry-rev(n;f) lifting-gen-rev: lifting-gen-rev(n;f;bags) int_seg: {i..j} nat: uall: [x:A]. B[x] exists: x:A. B[x] iff: P  Q squash: T and: P  Q apply: f a function: x:A  B[x] natural_number: $n universe: Type equal: s = t bag-member: bag-member(T;x;bs) bag: bag(T) funtype: funtype(n;A;T)
Definitions :  Unfold: Error :Unfold,  CollapseTHENA: Error :CollapseTHENA,  sqequal: s ~ t subtract: n - m equal: s = t function: x:A  B[x] int_seg: {i..j} universe: Type lambda: x.A[x] apply: f a add: n + m natural_number: $n Try: Error :Try,  Complete: Error :Complete,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  quotient: x,y:A//B[x; y] bag: bag(T) set: {x:A| B[x]}  squash: T implies: P  Q product: x:A  B[x] and: P  Q iff: P  Q isect: x:A. B[x] uall: [x:A]. B[x] nat: funtype: funtype(n;A;T) primrec: primrec(n;b;c) member: t  T all: x:A. B[x] int: subtype: S  T grp_car: |g| real: lifting-gen-rev: lifting-gen-rev(n;f;bags) uncurry-rev: uncurry-rev(n;f) rationals: lelt: i  j < k less_than: a < b le: A  B not: A false: False prop: void: Void subtype_rel: A r B uiff: uiff(P;Q) uimplies: b supposing a ge: i  j  strong-subtype: strong-subtype(A;B) ycomb: Y p-outcome: Outcome fpf: a:A fp-B[a] eclass: EClass(A[eo; e]) sq_type: SQType(T) guard: {T} rev_implies: P  Q true: True
Lemmas :  squash_wf true_wf rev_implies_wf iff_wf bag_wf lifting-member nat_wf member_wf funtype_wf subtype_rel_wf subtype_base_sq int_subtype_base int_seg_wf le_wf not_wf false_wf

\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[bags:k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)].  \mforall{}[f:funtype(n;A;B)].  \mforall{}[b:B].
    (bag-member(B;b;lifting-gen-rev(n;f;bags))
    \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}\mexists{}lst:k:\mBbbN{}n  {}\mrightarrow{}  (A  k).  ((\mforall{}[k:\mBbbN{}n].  bag-member(A  k;lst  k;bags  k))  \mwedge{}  ((uncurry-rev(n;f)  lst)  =  b)))


Date html generated: 2011_08_17-PM-06_04_34
Last ObjectModification: 2011_06_01-AM-00_05_52

Home Index