{ [k:Knd]. [l:IdLnk]. [dt:x:Id fp-Type].
    {(isrcv(k)) c (tag(k)  dom(dt))} supposing k  dom(lnk-decl(l;dt)) }

{ Proof }



Definitions occuring in Statement :  lnk-decl: lnk-decl(l;dt) fpf-dom: x  dom(f) fpf: a:A fp-B[a] Kind-deq: KindDeq id-deq: IdDeq tagof: tag(k) isrcv: isrcv(k) Knd: Knd IdLnk: IdLnk Id: Id assert: b uimplies: b supposing a uall: [x:A]. B[x] cand: A c B guard: {T} universe: Type
Definitions :  assert: b isrcv: isrcv(k) tagof: tag(k) isl: isl(x) pi2: snd(t) outl: outl(x) btrue: tt bfalse: ff ifthenelse: if b then t else f fi  member: t  T so_lambda: x.t[x] IdLnk: IdLnk Id: Id cand: A c B true: True all: x:A. B[x] Knd: Knd uall: [x:A]. B[x] so_apply: x[s] uimplies: b supposing a sq_type: SQType(T) implies: P  Q guard: {T} false: False locl: locl(a) rcv: rcv(l,tg)
Lemmas :  isrcv_wf fpf-dom_wf Id_wf id-deq_wf fpf-trivial-subtype-top tagof_wf assert_wf Knd_wf Kind-deq_wf lnk-decl_wf fpf_wf top_wf IdLnk_wf lnk-decl-dom2 subtype_base_sq product_subtype_base atom2_subtype_base lnk-decl-dom lnk-decl-dom-not

\mforall{}[k:Knd].  \mforall{}[l:IdLnk].  \mforall{}[dt:x:Id  fp->  Type].
    \{(\muparrow{}isrcv(k))  c\mwedge{}  (\muparrow{}tag(k)  \mmember{}  dom(dt))\}  supposing  \muparrow{}k  \mmember{}  dom(lnk-decl(l;dt))


Date html generated: 2011_08_10-AM-08_10_50
Last ObjectModification: 2011_06_18-AM-08_26_37

Home Index